
REPORT DOCUMENTAnON PAGE Form Approved OMB NO. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

16-09-2008 Technical Report 31-Aug-2008 - 30-Nov-2008

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Baiting Inside Attackers using Decoy Documents W911 NF-06-1-0151

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHORS 5a l PW:}JECT NUMBER

Brian M. Bowen, Shlomo Hershkop, Angelos D. Keromytis, Salvatore 1.

Stolfo 5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT

Columbia University NUMBER

Office of Contracts and Grants

630 West 168th Street, Box 49
New York, NY 10032 -3702

9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSOR/MONITOR'S ACRONYM(S)
ADDRESS(ES) ARO

U.S. Army Research Office 11. SPONSOR/MONITOR'S REPORT

P.O. Box 12211 NUMBER(S)

Research Triangle Park, NC 27709-2211 49626-C1.9

12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for Public Release; Federal Purpose Ri9hts

:rnStii15~~lZMtW:!~aw~nfCA.~:Qill¥?L"Bll§ins~tiet~~nMmati0i¥

13. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Anny position, policy or decision, muess so designated by other documentation.

14. ABSTRACT

The insider threat remains one of the most vexing problems in computer security. A number of approaches have been
proposed to detect nefarious insider actions including user modeling and profiling techniques, policy and access enforcement
techniques, and misuse detection. In this work we propose trap-based defense mechanisms for the case where insiders
attempt to exfiltrate and use sensitive information. Our goal is to confuse and confound the attacker requiring far more effort
to identify real information from bogus information and to provide a means of detecting when an inside attacker attempts to
exploit sensitive information. "Decoy Documents" are automatically generated and stored on a file system with the aim of

15. SUBJECT TERMS

Deception; Insider Attack; Decoy Documents;

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 15. NUMBER 19a. NAME OF RESPONSIBLE PERSON

a. REPORT b.ABSTRACT c. THIS PAGE ABSTRACT OF PAGES Salvatore Stolfo

KgX u U U SAR 19b. TELEPHONE NUMBER
212-939-7080

Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.l8

EAdams
Typewritten Text
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

EAdams
Typewritten Text

EAdams
Typewritten Text

EAdams
Typewritten Text
Approved for Public Release; Federal Purpose Rights

EAdams
Typewritten Text
xxx

EAdams
Typewritten Text
U



Baiting Inside Attackers using Decoy Documents

Report Title

ABSTRACT

The insider threat remains one of the most vexing problems in computer security. A number of approaches have been proposed to detect 

nefarious insider actions including user modeling and profiling techniques, policy and access enforcement techniques, and misuse detection. 

In this work we propose trap-based defense mechanisms for the case where insiders attempt to exfiltrate and use sensitive information. Our 

goal is to confuse and confound the attacker requiring far more effort to identify real information from bogus information and to provide a 

means of detecting when an inside attacker attempts to exploit sensitive information. “Decoy Documents” are automatically generated and 

stored on a file system with the aim of enticing a malicious insider to open and review the contents of the documents. The decoy documents

contain several different types of bogus credentials that when used, trigger an alert. We also embed “stealthy beacons” inside the documents 

that cause a signal to be emitted to a server indicating when and where the particular decoy was opened. We evaluate decoy documents on 

honeypots penetrated by attackers demonstrating the feasibility of the method.



Baiting Inside Attackers using Decoy Documents

Brian M. Bowen, Shlomo Hershkop, Angelos D. Keromytis, Salvatore J. Stolfo

Department of Computer Science
Columbia University

September 16, 2008

Abstract

The insider threat remains one of the most vexing problems in computer security. A number
of approaches have been proposed to detect nefarious insider actions including user modeling
and profiling techniques, policy and access enforcement techniques, and misuse detection. In
this work we propose trap-based defense mechanisms for the case where insiders attempt to
exfiltrate and use sensitive information. Our goal is to confuse and confound the attacker
requiring far more effort to identify real information from bogus information and to provide a
means of detecting when an inside attacker attempts to exploit sensitive information. “Decoy
Documents” are automatically generated and stored on a file system with the aim of enticing
a malicious insider to open and review the contents of the documents. The decoy documents
contain several different types of bogus credentials that when used, trigger an alert. We also
embed “stealthy beacons” inside the documents that cause a signal to be emitted to a server
indicating when and where the particular decoy was opened. We evaluate decoy documents on
honeypots penetrated by attackers demonstrating the feasibility of the method.

1 Introduction

Much research in computer security has focused on the means of preventing unauthorized and ille-
gitimate access to systems and information. Unfortunately, the most damaging malicious activity
is the result of internal misuse within an organization, perhaps since far less attention has been
focused inward. Despite classic internal operating system security mechanisms and the body of
work on formal specification of security and access control policies, including Bell-LaPadula [1]
and the Clark-Wilson models [4], we still have an extensive insider attack problem. Indeed in many
cases, formal security policies are incomplete and implicit or they are purposely ignored in order
to get business goals accomplished. There seems to be little technology available to address the
insider threat problem. Insider attack has overtaken viruses and worm attacks as the most reported
security incident according to a report from the US Computer Security Institute (CSI) [20]. The
annual Computer Crime and Security Survey for 2007 surveyed 494 security personnel members

1



from US corporations and government agencies, finding that insider incidents were cited by 59
percent of respondents, while only 52 percent said they had encountered a conventional virus in
the previous year. The state-of-the-art seems to be still driven by forensics analysis after an attack,
rather than technologies that prevent, detect, and deter insider attack.

We define insider threats by differentiating between Masqueraders (attackers who impersonate
another inside user) and Traitors (an inside attacker using their own legitimate credentials). One
possible solution for masquerade detection involves anomaly detection [19]. In this approach, users
actions are profiled to form a baseline of normal behavior. Subsequent monitoring for abnormal
behaviors that exhibit large deviations from this baseline [17] signal a potential insider attack. The
common strategy to prevent inside attacks involves policy-based access control techniques to limit
the scope of systems and information an insider is authorized to use, and hence, limit the damage
the organization may incur when an insider goes awry. Prevention techniques may not always
succeed, and thus, monitoring and detection techniques are needed when prevention fails. In this
paper, we are focused on different techniques aimed at detecting masqueraders and traitors.

We note that some external attackers can become insiders when an outsider attains internal
network access. Many attacks use spyware and rootkits [3], which give outsiders internal access.
Such software can easily be installed on systems from physical or digital media (e.g., email, down-
loads, etc.) and allow an attacker administrator or “root” access on a machine along with a means
to gather sensitive data. Rootkits have the ability to conceal themselves and elude detection, es-
pecially when the rootkit is previously unknown, as is true in zero-day attacks [8]. An external
attacker that manages to install rootkits internally in effect becomes an insider, thereby multiplying
the ability to inflict harm. Although the techniques described in this paper may have utility for
these cases, in this paper our primary focus is on human insiders attempting to exfiltrate sensitive
information. By exfiltration we mean unauthorized copying and transmission of information by
any means including human memory.

The insider attack defense system described in this paper is of an offensive nature, intended
to confuse and deceive a traitor by leveraging uncertainty, to reduce the knowledge they ordinarily
have of the systems and data they might be authorized to use. This work considers methods to detect
insider attack against enterprise systems as well as individual hosts and laptops. We introduce a
deception system to distribute potentially large amounts of decoy information with the aim to detect
nefarious acts as well as to increase the workload of an attacker to identify real information from
bogus information, rather than providing unfettered access as broadly exists today. We developed
a system to generate and place decoy documents within a file system. Our system generates decoy
documents containing decoy credentials that are monitored (e.g., Gmail credential monitoring)
for misuse and stealthily embedded beacons that signal an alert when the document is opened.
Beacons are embedded in documents using methods of deception and obfuscation gleaned from
studying malcode embedded inside documents as seen in the wild [16]; we thus turn the tables on
attackers.

To achieve the goal of wide spread deception we must consider methods to trap a wide variety
of potential insiders with varying levels of sophistication. Toward this goal, we developed a proof-
of-concept system we call D3, the Decoy Document Distributor system. Samples of D3 generated

2



documents are presented in the Appendix. The contributions of this paper include:

• A large-scale automated creation and management system for deploying decoys that can
detect the presence (and, in some cases, “identity”) of malicious insiders, or at least indicate
malicious insider activity.

• An offensive trap-based defense system is proposed to detect masqueraders and traitors, and
to flood attackers with bogus exfiltrated information that they must analyze in order to find
real information of value. Hence, our long term goal is to flood the miscreant marketplace
with bogus information devaluing their quarry.

• A set of properties are proposed to guide the design of decoys and a system to automatically
generate large quantities of decoy information that considers the level of sophistication of
the inside attacker.

• A design of decoy information that combines a number of methods and monitors, both inter-
nal and external, to detect insider exploitation using a common and ubiquitous set of baited
targets, ordinary looking documents.

– A watermark is embedded in the binary format of the document file to detect when the
decoy is loaded in memory, or egressed in the open over a network.

– A “beacon” is embedded in the decoy document that signals a remote website upon
opening of the document indicating the malfeasance of an insider illicitly reading bait
information.

– If these methods fail to detect an insider attack or an exfiltration of baited documents,
the content of the documents contain bait and decoy information that is monitored
as well. Bogus logins at multiple organizations as well as bogus and realistic bank
information is monitored by external means.

• An easy to use system to broadly deploy decoys to ordinary users who are alerted by email
when a decoy has been touched on their laptops and personal computers; no such system
presently exists.

The reader is encouraged to visit the Decoy Document Distribution (D3) website to evaluate
our technology developed to date at: http://www.cs.columbia.edu/ids/RUU/Dcubed1.

2 Related Work

The use of deception, or decoys, plays a valuable role in the protection of systems, networks, and
information. The first use of decoys (i.e., in the cyber domain) has been credited to Cliff Stoll

1Some features are restricted for internal use only.

3



[26, 24] and detailed in his novel “The Cuckoos Egg” [25], where he provides a thorough account
of his crusade to catch German hackers breaking into Lawrence Berkley Laboratory computer
systems. Stoll’s methods included the use of bogus networks, systems, and documents to gather
intelligence on the German attackers who were apparently seeking state secrets. Among the many
techniques waged, he crafted “bait” files, or in his case, bogus classified documents that really
contained non-sensitive government information and attached “alarms” to them so that he would
know if anyone accessed at them. To Stoll’s credit, a German hacker was eventually caught and it
was found that he had been selling secrets to the KGB.

Deception-based information resources that have no production value other than to attract and
detect adversaries (like those used by Stoll) are commonly known as Honeypots [11]. Honeypots
serve as effective tools for profiling attacker behavior and to gather intelligence to understand
how attackers operate. Honeypots are considered to have low false positive rates since they are
designed to capture only malicious attackers, except for perhaps an occasional mistake by innocent
users. Spitzner described how honeypots can be useful for detecting insider attack[23], in addition
to the common external threats for which they are traditionally known. He discusses the use of
honeytokens, which he defines as “a honeypot that is not a computer” [24], citing examples that
include bogus medical records, credit card numbers, and credentials, with descriptions of how
they can be used to detect malicious insiders [23, 24]. In current systems, the decoy/honeytoken
creation is a laborious and manual process requiring large amounts of administrator intervention.
In contrast, we propose the seeding of decoy information (of various different types) throughout an
operational system. Our work extends these basic ideas to an automated system of managing the
creation and deployment of these honeytokens.

Yuill et al. [26] extend the notion of honeytokens with a “honeyfile system” to support the
creation of bait files, or as they define them, “honeyfiles.” The honeyfile system is implemented as
an enhancement to the Network File Server. The system allows for any file within user file space to
become a honeyfile through the creation of a record associating a filename to userid. The honeyfile
system monitors all file access on the server and alerts users when honeyfiles have been accessed.
Their work does not focus on the content or automatic creation of files, but they do elicit some of
the challenges of creating deceptive files (with respect to names) that we address in section 4.

In this paper, we introduce a set of properties of decoys to guide their design and maximize
the deception they induce for different classes of insiders who vary by their level of knowledge
and sophistication. Bell and Whaley [2] have described the structure of deception as a process
of hiding the real and showing showing the false. They introduce several methods of hiding that
include masking, repackaging, and dazzling, along with three methods of showing that include
mimicking, inventing, and decoying. Yuill et al. [27] expand upon this work and characterize
deceptive hiding in terms of how it defeats an adversary’s discovery process. They describe an
adversary’s discovery process as taking three forms: direct observation, investigation based on
evidence, and learning from other people or agents. Their work offers a process model for creating
deceptive hiding techniques based on how they defeat an adversary’s discovery process.

The decoy documents introduced in this paper utilize similar deception mechanisms as well
as beacons to signal a remote detect and alert in real-time time when a decoy has been opened.

4



Web bugs are a form of silent embedded beacons which have been used to track user habits of
web or email. Web bugs are a class of silent embedded tokens which have been used to track
usage habits of web or email users [18]. Unfortunately, they have been most closely associated
with unscrupulous operators, such as spammers, virus writers, and spyware authors who have used
them to violate users privacy. Typically they will be embedded in the HTML portion of an email
message as a non-visible white on white image, but they have also been demonstrated in other
forms such as Microsoft Word, Excel, and PowerPoint documents [22]. When rendered as HTML,
a web bug triggers a server update which allows the sender to note when and where the web bug
was viewed. Animated images allow the senders to monitor how long the message was displayed.
The web bugs operate without alerting the user of the tracking mechanisms. The advantage for
legitimate advertisers is that this allows them to monitor advertisement effectiveness, while privacy
advocates worry that this technology can be misused to spy on users’ habits. Our work leverages the
same ideas, but extends them to other document classes and is more sophisticated in the methods
used to draw attention. In addition, our targets are insiders who should have no expectation of
privacy on a system they violate.

3 Threat Model - Level of Sophistication of the Attacker

The insider seeks to identify and avoid the decoys and abscond with “real” information. We broadly
define four monotonically increasing levels of insider sophistication and capability. Some will have
tools available to assist in deciding what is a decoy and what is real. Others will only have their
own observations and thoughts.

• Low: Direct observation is the only tool available. The adversary largely depends on what
can be gleaned from a first glance. We strive to defeat this level of adversary with our
beacon documents, even though decoys with embedded beacons may be distinguished with
more advanced tools.

• Medium: A more thorough investigation can be performed by the insider; decisions based on
other, possibly outside evidence, can be made. For example, if a decoy document contains a
decoy account credential for a particular identity, an adversary may verify that the particular
identity is real or not by querying an external system (such as www.whitepages.com). Such
adversaries will require stronger decoy information possibly corroborated by other sources
of evidence.

• High: Access to the most sophisticated tools are available to the attacker (e.g., super comput-
ers, other informed people who have organizational information). The notion of the “Perfect
Decoy” described in the next section may be the only indiscernible decoy by an adversary of
such caliber.

• Highly Privileged: Probably the most dangerous of all is the privileged and highly sophis-
ticated user. Such attackers might even be aware that the system is baited and will employ

5



sophisticated tools to try to analyze, disable, and avoid decoys entirely. Trapping this class
of attacker is the most difficult and beyond the scope of this paper.

4 Generating and Distributing Bait

In order to create decoys to bait various levels of insiders, one must understand the core properties
of a decoy that will successfully bait an insider.

4.1 Decoy Properties

We enumerate various properties and means of measuring these properties that are associated with
decoy documents to ensure their use will be likely to snare an inside attacker.

• Believable2: Capable of eliciting belief or trust; capable of being believed; appearing
true; seeming to be true or authentic.

A good decoy should make it difficult for an adversary to discern whether they are looking at an
authentic document from a legitimate source or if they are indeed looking at a decoy. We conjecture
that believability of any particular decoy can be measured through experiment. We define a decoy
believability experiment as follows:

• Choose two documents such that one is the decoy we wish to measure the believability of
and the second is chosen at random from a pool of authentic documents.

• Select a volunteer at random to participate in a user study.

• The volunteer is given access to the documents chosen in step one and tasked to decide which
of the two is authentic.

For concreteness, we build upon the definition of “Perfect Secrecy” proposed in the cryptog-
raphy community [13] and define a “perfect decoy” to be a decoy that is chosen in a believability
experiment with a probability of 1/2 (the outcome that would be achieved if the volunteer decided
completely at random). That is, a perfect decoy is one that is completely indistinguishable from
one that is not. A benefit of this definition is that the challenge of showing a decoy to be believable,
or not, reduces to the problem of creating a “distinguisher” that can decide with probability better
than 1/2.

In practice, the construction of a “perfect decoy” might be unachievable, especially through
automatic means, but the notion remains important as it provides a goal to strive for in our design
and implementation of systems. For many threat models, it might suffice to have less than perfect
believable decoys. For our proof-of-concept system described below, we generate receipts and

2For clarity, each property is provided with its definition gleaned from online dictionary sources.

6



tax documents, and other common form-based documents with decoy credentials, realistic names,
addresses and logins, all information that is familiar to all users.

We note that the believable property of a decoy may be less important than other properties
defined below since the attacker may have to open the decoy in order to decide whether the docu-
ment is real or not. The act of opening the document may be all that we need to trap the insider,
irrespective of the believability of its content. Hence, enticing an attacker to open a document may
be a more effective defense strategy.

• Enticing: highly attractive and able to arouse hope or desire; “an alluring prospect”;
lure.

Herein lies the issue of how does one measure the extent to which a decoy arouses desires, how
well is it a lure? One obvious way is to create decoys containing information with monetary value,
such as passwords or credit card numbers that have black market value [15].

However, enticement depends upon the attacker’s intent. Hence, we posit that by defining
several general categories of “things” that are of “attacker interest”, one may compose decoys
using terms or words that correspond to desires of the attacker that are overwhelmingly enticing.
For example, if the attacker desires money, any document that mentions or describes information
that provides access to money should be highly enticing. We believe we can measure frequently
occurring (search) terms associated with major categories of interest and use these as the constituent
words in decoy documents. To measure the effectiveness of this generative strategy, it should be
possible to execute content searches and count the number of times decoys appear in the top 10
list of displayed documents. This is a reasonable approach also, to measuring how conspicuous,
defined below, the decoys become based upon the attacker’s searches associated with their interest
and intent.

• Conspicuous: easily visible; easily or clearly visible; obvious to the eye or mind; At-
tracting attention.

Here, a conspicuous decoy should be easily found or observed. When a user first logs in, a
conspicuous decoy should either be in full view on the desktop, or viewable after one (targeted)
search action. One simple user action is optimal for a highly conspicuous decoy. Thus, a measure
of conspicuousness may be a count of the number of search actions needed, on average, for a decoy
to appear in full view. The decoy may be stored in the file system anywhere if a simple content-
based search locates it in one step. But, this search act depends upon the query executed by the user.
The query can either be a location (eg., search for a directory named “TAX” in which the decoy
appears) or a content query (eg., using Google Desktop Search for documents containing the word
“TAX.”) In either case, if a decoy document appears after one such search, it is conspicuous. But,
this depends upon what search terms the attacker uses to query! If the decoy never appears because
the attacker used the wrong search terms, the decoy is not conspicuous. We posit that the property
of enticing is likely the most important property, and a formal measure to evaluate enticement will
generate better decoys. In summary, an enticing decoy should be conspicuous to be an effective
decoy trap.

7



• Detectable; to discover or catch (a person) in the performance of some act: to detect
someone cheating.

We designed the decoy documents with several techniques to provide a good chance of detect-
ing the malfeasance of an inside attack in real-time.

• At time of application start-up, the decoy document emits a beacon alert to a remote server.

• At the time of memory load, a host-sensor, such as an AV scanner, may detect embedded
tokens placed in a clandestine location of the document file format.

• At the time of exfiltration, a NIDS such as Snort may be used to detect these embedded
tokens during the egress of the decoy document in network traffic where possible.

• At time of information exploitation and/or credential misuse, monitoring of decoy logins
and other credentials embedded in the document content by external systems will generate
an alert that is correlated with the decoy document in which the credential was placed.

This extensive set of monitors forces the attacker to expend considerable effort to avoid detec-
tion, and hopefully will serve as a deterrent to reduce internal malfeasance within organizations
that deploy such a trap-based defense. In the proof-of-concept implementation reported in this
paper, we focus our evaluation on the fourth item. We utilize monitors at our local IT systems, at
Gmail and at an external bank.

• Variability: The range of possible outcomes of a given situation; the quality of being
subject to variation.

Attackers are humans with insider knowledge, even possibly with the knowledge that decoys
are liberally spread throughout an enterprise. Their task is to identify the real documents from the
potentially large cache of decoys. One important property of the set of decoys is that they are not
easily identifiable due to some common invariant information they all share. A single search or
test function would thus easily distinguish the real from the fake. The decoys thus must be highly
varied.

Clearly, a good decoy generator should produce an unbounded collection of enticing, conspic-
uous but distinct and variable documents. They are distinct with respect to string content. If the
same sentence appears in 100 decoys, one wouldn’t consider such decoys with repetitive informa-
tion as highly variable; the common invariant sentence(s) can be used as a “signature” to find the
decoys, rendering them distinguishable (and clearly, less enticing).

• Non-interference: Something that does not hinder, obstructs, or impede.

How might a decoy interfere with regular operations of the legitimate user? One would expect
that the more conspicuous a decoy is, the more it would interfere (since it could be found more

8



easily). Conspicuous may help catch a thief, but the unwitting user may be ensnared as a by-
product.

Although we seek to create decoys to ensnare an inside attacker, a legitimate user whose data
is the subject of an attacker must still be able to identify their own real documents from the planted
decoys. The more enticing or believable a decoy document may be, the more likely it would be to
lead the user to confuse it with a legitimate document they were looking for. Our goal is to increase
believability, conspicuousness and enticingness while keeping interference low; ideally a decoy
should be completely non-interfering. There are obvious ways to measure this with real users,
once we have mechanisms for generating and distributing large numbers of decoy documents. The
challenge is to devise a simple and easy to use scheme for the user to easily differentiate their own
documents, and thus a measure of interference is then possible as a by-product.

As an outsider, we presume the attacker lacks some specific knowledge known to the creator
of the real document, or the attacker lacks access to some “physical key” owned by the user who
created the document. This crucial property therefore requires that the legitimate owner of the
document be able to easily differentiate the real document they created from the bogus generated
to thwart the attacker. Hence, another important property is as follows.

• Differentiable: to mark or show a difference in; constitute a difference that distin-
guishes; to develop differential characteristics in; to cause differentiation of in the
course of development.

It is important that decoys be “obvious” to the legitimate user to avoid interference, but “un-
obvious” to the insider stealing information. How might we easily differentiate a decoy for the
legitimate user so that we maintain “non-interference” with the user’s own actions and legitimate
work?

One method we are studying employs a physical solution reminiscent of the Cardano Grille3

(circa 1580) that raises the bar against insider theft. The basic concept is to embed in each decoy
and each real document a computational object (a function) that when executed (say by a mouse
click) displays a pattern in a bounded box. That pattern can appear as random as one wishes by
design, such as a 2D-bar code. A human would see no signal from the pattern.

For each decoy and real document, the display will vary in such a way that one can distinguish
between real and decoy using a physical uniquely patterned transparent screen overlaid on the
displayed pattern to reveal a derived word, picture or icon (or some general indicia) that allows the
user to discriminate between real documents and decoys.

This approach requires the attacker not only steal the user’s documents and files on their hard
drive, or in the shared file system, but also the attacker must steal the physical overlay pattern from
the user’s pocket.

The remote thief who exfiltrates all of a user’s files onto a remote hard drive may be perplexed
by having hundreds of decoys amidst a few real documents; the thief should not be able to easily
differentiate between the two cases. If we store a hundred decoys for each real document, the

3The relationship of this concept to the Cardano Grille was suggested by Steve Bellovin.

9



thief’s task is daunting; they would need to test embedded information in the documents to decide
what is real and what isn’t, which should complicate their end goals. For clarity, decoys should be
easily differentiable to the legitimate user, but not to the attacker without significant effort.

4.2 The Decoy Document Distributor (D3) System

The D3 web-based service generates and distributes decoy documents to registered users. The
general decoy properties guide the design of decoy templates in D3 that are used to generate specific
documents for download. The content of each decoy document includes several types of “bait”
information such as online banking logins provided by a collaborating financial institution4, student
accounts at Columbia, and email accounts from a popular service provider, Gmail. These decoy
credentials are “bait” and are enticing targets for different types of adversaries [15, 14]. These
particular examples of bait credentials are monitored internally and externally.

4.3 Decoy Document Design

The primary goal of the trap based defense is to detect malfeasance. Since no system is foolproof,
we propose that multiple overlapping signals be embedded in the decoy documents to ensure de-
tectability. Any alert generated by the multiple decoys is an indicator that some insider activity has
occurred. Since the attacker may have varying levels of sophistication, a combination of traps are
used in decoy documents to increase the likelihood one will succeed in generating an alert. A so-
phisticated attacker may, for example, disable the internal beacon, or cut off network connections
avoiding communication, disable or kill local host monitoring processes, or they may exfiltrate
documents via a web-browser without opening them locally. The documents are designed with
several means of detecting their misuse:

• embedded honeytokens, computer login accounts created that provide no access to valuable
resources, and that are monitored when (mis)used;

• embedded honeytoken banking login accounts specifically created and monitored for this
trap-based technology demonstration specifically to entice financially motivated attackers;

• a network-level egress monitor that alerts whenever a marker, specially planted in the decoy
document, is detected (we are collaborating with Cornell to use Cayuga [5] for this purpose.
Presently Snort may be used as simple signature detector as a proof-of-concept);

• a host-based monitor that alerts whenever a decoy document is “touched” in the file system
such as a copy operation;

• an embedded “beacon” alerts a remote server at a site at Columbia, that we call SONAR.
The website emits an email to the registered user who created and downloaded the decoy
document. The implementation of document beacons is described in the next section.

4By agreement, the institution request that its name be withheld.

10



4.3.1 Beacon Implementation

The highly sophisticated attacker will likely attempt to differentiate between a real document and a
decoy by analyzing the binary file format prior to opening a file. This necessitates a design where
beacon code and watermarks in decoy documents are hidden to avoid their easy identification. The
attacker would surely avoid the decoys if they could easily identify them by a simple static test for
an embedded beacon. The beacon code can be embedded in documents in a number of ways and
made to appear statistically equivalent to its surrounding data using a blending technique called
“spectrum shaping” (see [21, 6]). Such obfuscation techniques are very hard to defeat [16].

Using common techniques developed for malware, beacons attempt to silently contact a cen-
tralized server with a unique token embedded within the document at creation time. The token is
used to identify the decoy and document, IP address of the host accessing the decoy document. In
addition to passing the token and IP address, some addition data is collected. This is dependent
on the particular document type, and the rendering environment used during viewing of the beacon
document.

The first proof-of-concept beacons have been implemented in Word and PDF and deployed
through the D3 website.

4.3.2 Word

Microsoft Word allows users to automate tasks by recording a set of common actions that can be
triggered on demand. These “Word Macros” and tasks are encoded and interpreted in Microsoft’s
Visual Basic scripting language.

Due to security concerns, firewalls strictly limit the ability of Word to access the Internet. Be-
cause of the embedded VB engine, Word can invoke other system objects from within a macro
script. The local browser can be invoked from within a Word macro, bypassing the firewall. In-
formation such as local machine directories, user’s credentials, and the machine’s IP address can
all be encoded and passed through the firewall by the local browser agent. As long as the docu-
ment is digitally signed, Word will allow some level of macro activity on the host. The macros are
automatically triggered upon opening the document.

An alternative method which does not require macro support is suggested by [22]. A remote
image is embedded in the decoy document and rendered by Word’s document browser when the
user views the document. The D3 website supports this feature by intercepting image requests and
parsing out stealthy tokens embedded in the image request.

4.3.3 Adobe PDF

PDF is an open standard published by the ISO and is supported on most platforms and configu-
rations. In the latest version, Adobe has embedded a Javascript interpreter in the application to
be able to verify form data as the user enters them in. We leverage this feature to issue a data re-
quest upon the initial opening of the document through some Javascript code. The beacon contains
the token to identify the document so that the system can track individual documents as they are

11



read across different systems. Due to security concerns, the latest releases of Adobe Reader now
prompt the user for permission to contact a remote server. On the users own host, this action can
be “memorized” so that subsequent requests do not issue warnings. Earlier versions of the Adobe
Reader do not show an alert, allowing them to silently contact the SONAR server also on remote
systems. Not all readers support the Javascript PDF so this particular beacon is limited on those
systems where the default reader is not Adobe.

The D3 site includes a tutorial guiding the user on how to generate, download, and open a
newly generated decoy document to “memorize” beacon triggers to allow silent communication on
the host.

4.3.4 Embedded Marker implementation

Beacon documents contain embedded markers that a host or network sensor may detect either when
documents are loaded in memory or egressed in the open. For the initial proof-of-concept system
the markers are constructed as MD5 signatures from a set of keywords. The markers are placed
in either the beacon document’s meta-data area or embedded as a comment within the document
format structure. Both locations are ideal for embedding stealthy markers since most rendering pro-
grams ignore these parts of the document. The embedded markers can be used in Snort signatures
for detecting exfiltration.

5 Experiments using Decoy Documents as Bait

We have defined the general properties that decoys should have and discussed how we may measure
these properties, but here we focus on the most important property: detectability. Under ideal
testing conditions, decoy efficacy could be shown through deployment on true operational systems
either within an enterprise environment, or on personal computers, by the number of attacks they
are able to detect or thwart (they have a deterrence effect). However, given reasonable time limits,
the infrequency of attacks within the insider threat model makes this approach impractical within
a university environment. As we mentioned we are now seeking a larger user population to study
and measure decoy generation over time.

Another approach to evaluation is a user study in which users are organized and asked to evalu-
ate decoys based on each of the key decoy properties mentioned earlier. We take human evaluation
to be the gold standard of evaluation since the human mind is the ultimate target of our decoys.
That is, we wish to show how well our decoys can induce deception on human test subjects. One
of the challenges of conducting a traditional user study lies in the logistics of obtaining volunteers.
In our methodology, we attempt to reduce this challenge by leveraging external attackers to serve
as participants in our study. To do so, we “invite” attackers (or more accurately, bamboozle them)
into our study by attracting them with a set of vulnerable systems on the university network, which
also serve as our testing platform.

Our test platform is embedded within a honeynet [9]. It consists of several virtual machines
running Linux and configured with Sebek [10] to capture attacker activities including commands

12



and file references. In order to limit potential damage from system compromise and still allow for
testing, we configured the honeynet to allow all incoming connections while restricting the number
of outgoing connections.

The virtual machine hosts within the honeynet were configured with accounts and home direc-
tories for three decoy usernames. To make the environment as real as possible, genuine data from
personal accounts on other systems were loaded into each of the home directories. We changed
name references within the data to reflect those of the appropriate decoy users. In total, our phony
user accounts contained 15 or more directories and 50-100 files. The hosts were then seeded with
several of D3’s decoy files using the decoy distributor utility. The decoy files were generated to
have conspicuous names such as “stolen passwords”, “credit card”, “private data”, and “Gmail
AccountInfo”, but were distributed within the polluted home directories of the decoy accounts,
making the environment as real as possible.

To lure test subjects into the study, our initial approach was to use attackers that attempt to gain
internal access via password scanning. Password scanning attacks are common on the university
network, where attempts on a typical machine are in the range of thousands per day. To enable
attacker access, we conducted a short study to first determine the most common usernames and
passwords (excluding those for root and actual users) used in these attempts. We created accounts
with several of these usernames and passwords, to quickly learn that this breed of attacker was
not going to suffice for our user study; their sole purpose seemed confined to creating zombies for
botnets. While this may be a valid threat to study while evaluating decoys [7], allowing bots to
operate on the university network poses too much risk.

In our second and more aggressive approach, we narrowed our recruitment effort to web forums
and IRC channels with the expectation and hope that we would get fewer attacks involving botnets.
In this approach, we selected several high volume forums to solicit volunteers and posted variations
of invitations with messages that included hostnames, usernames, and passwords. The idea was to
provide just enough innocent-looking information from a novice to lure people into our machines
without providing direct evidence that we were conducting a deception-based experiment. Note
that we deliberately omit the names of the forums used and the exact details of the messages, as
this is an ongoing study.

While our methodology could, in theory, provide anyone with access to our test platform, by
selectively choosing the location of postings and contents postings, we expected to recruit two
primary classes of individuals:

• Legitimate and generally curious computer-savvy individuals. These users have no interest
in extending privileges in an unauthorized way, but participate in the study out of curiosity,
as there is no other incentive.

• Unscrupulous opportunistic hackers who attempt to extend their network access by what-
ever means afforded to them. These individuals are enticed by our posting as they see our
machines as low “hanging fruit” in their targeting campaign.

In either case, we believe these individuals to be suitable candidates for our study (with one caveat
mentioned later). Both classes of individuals can be used in measuring the enticement property of

13



decoys. We measure this by examining the behavior exhibited in file access, both with respect to
the particular files a user attempts to read and in the order in which the files are read. For example,
if all users consistently read the same file first, we know the file must indeed be enticing.

In regards to indistinguishability of the decoys, we note that the content of these decoys con-
tains bait information in the form of monitored credentials on real systems. Certainly, if our at-
tackers take the time to use the decoy credentials, there is an implication that they must also be
believable. More importantly though, if they use the credentials and we detect their use, we have
also answered the most important question of - can we detect the attacker? Note that the first class
of the individuals is by definition, not useful for this part of the study. That is, attempting to use
credentials found on our machines is clearly an illicit activity, which they would not partake in.
Unfortunately, we do not have a good way of distinguishing the two classes, so we get slightly
skewed results.

Over the span of the first week 5, our hosts netted 20 unique users, determined anecdotally by
source IP address and reinforced by the unique behaviors exhibited by each. The length of user
sessions ranged from minutes to hours. The users that spent hours were focused on activities that
included writing code and attempting to install other software, presumably with malicious intent.
The most common activities exhibited for users upon login included activities such as: determining
who else was on the machine, checking and deleting the command history, and exploring the system
(i.e., reading the most conspicuous files). We note that in almost all cases, our decoys were among
the first few files viewed by users upon initial login (as noted, viewing the history file was also
popular). The most significant observations were made for 6 of the 20 unique users:

1. There were three attempts to use Gmail credentials that were contained in a decoy document,
which triggered an alert on SONAR.

2. One person succeeded in changing the password on a bogus Gmail account, which also
triggered a SONAR alert.

3. There were at least two attempts to exfiltrate decoy files with Secure Copy and Secure FTP,
one named “stolenpasswords” that contained credentials to the university systems.

4. There was one attempt to use the credentials contained in the “stolenpassword” file, which
we were alerted to by the monitor that signaled an alert to SONAR.

We take these results as evidence that D3/SONAR indeed has value as an insider defense system.
While only 5 of the 20 users sounded an alarm on SONAR, we emphasize that our methodology
did include an unknown proportion of benign users.

One flaw of our methodology that was revealed during testing was that we allowed users to
make changes to the file system. We did this deliberately to increase the realism of the environment
in the experiments. The problem this created was that it made decoy defense vulnerable to deletion
(e.g., several of our visitors executed wholesale deletion of files with “rm -rf *”) . This poses a

5We note that most attacks occurred within the first 8 hour period after posting.

14



problem in our testing methodology, but not necessarily in practice. That is, the act of deleting files
is in itself a detectable behavior that would alert monitors of suspicious behavior.

In this study, we assumed a level of sophistication great enough to surpass the “beacon” embed-
ded decoys, and therefore, omitted them. Their exclusion was prudent as they represent a different
class (i.e., designed for a less sophisticated threat model) of decoy than the documents containing
credentials due to their distinguishability (i.e. they emit pings to a central server). We did not
want to chance revealing the nature of the study to participants who were assumed to be highly
sophisticated and would notice pings. We believe the value of decoy documents to be self-evident.
We leave the reader with a link to the D3 site to try it and become part of our planned longitudinal
study.

6 Conclusion

Our work focuses on the study and creation of bait information with the aim of exposing or thwart-
ing the exploitation of exfiltrated information. Although the use of bait information and similar
trap-based defenses is well known, most of those efforts have focused either on artifacts that are
logically separate from the operational systems (e.g., honeypots [23]) or on low-level snippets of
information created manually (e.g., fake database records [24]). The D3 system is a scalable and
automated trap-based defensive system that forces attackers to expend considerable effort to iden-
tify realistic useful information from purposely planted bogus information intended to deceive.
Naturally, the probability of exposing a malicious insider with trap-based defense tactics increases
with the amount of decoy information that is generated and disseminated. D3 offers the novel ser-
vice of automatically creating and managing decoy documents, enabling the throttling of bait based
on the desired protection level or cost (e.g., interference) one is willing to pay.

15



Acknowledgments

This material is based upon work supported in part by the US Department of Homeland Secu-
rity under Grant Award Number 60NANB1D0127 with the Institute for Information Infrastructure
Protection (I3P), and the Army Research Office (ARO) Under Grant Award W911NF-06-1-0151
- 49626-CI. The I3P is managed by Dartmouth College. The views and conclusions contained in
this document are those of the authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the U.S. Department of Homeland Security, the
I3P, ARO, or Dartmouth College.

We give special thanks to Henner Mohr for his diligent effort and contributions to the develop-
ment of the D3 website and decoy document content.

References

[1] Bell D. E. and LaPadula L. J., “Secure Computer Systems: Mathematical Foundations”.
MITRE Corporation, 1973.

[2] Bell, J. and Whaley, B. Cheating and Deception, Transaction Publishers, New Brunswick, NJ.
1982.

[3] Butler, J., Sherri S., “Security: Spyware and Rootkits”, Login, Vol 29, No 6, December 2004.

[4] Clark, D. D. and Wilson, D. R., “A Comparison of Commercial and Military Computer Security
Policies”. IEEE Symposium on Security and Privacy, 1987.

[5] Demers, A., Gehrke, J., Hong, M., Panda, B., Riedewald, M., Sharma, V., White, W., “Cayuga:
A General Purpose Event Monitoring System”. CIDR 2007.

[6] Detristan, T., Ulenspiegel, T., Malcom Y., and Von Underduk, M. S. “Polymorphic Shellcode
Engine Using Spectrum Analysis”. Phrack 11, 61-9 (2003).

[7] Friess, N., and Aycock, J.,“Black Market Botnets”, Department of Computer Science, Univer-
sity of Calgary, TR 2007-873-25, July, 2007.

[8] Hoang, M. “Handling Today’s Tough Security Threats”, Symantec Security Response, 2006.

[9] The Honeynet Project. http://www.honeynet.org

[10] The Honeynet Project, “Know Your Enemy: Sebek, A Kernel based data capture tool”,
November, 2003.

[11] Honeypots. http://www.honeypots.org/

[12] Honeypot Mailing List, Security Focus.
http://www.securityfocus.com/archive/119

16



[13] Katz, John and Yehuda L., Introduction to Modern Cryptography, Chapman and Hall CRC
Press, 2007.

[14] Kravets, D., ”From Riches to Prison: Hackers Rig Stock Prices”, Wired Blog Network,
September, 2008.
http://blog.wired.com/27bstroke6/2008/09/from-riches-to.html

[15] Krebs, B., “Web Fraud 2.0: Validating Your Stolen Goods”, The Washington Post, August
20, 2008.

[16] Li W., Stolfo S. J., Stavrou A., Androulaki E., and Keromytis A., ”A Study of Malcode-
Bearing Documents”. DIMVA, 2007

[17] Maloof, M. and Stephens, G. D., “ELICIT: A System for Detecting Insiders Who Violate
Need-to-know”. Recent Advances in Intrusion Detection (RAID), 2007.

[18] McRae, Craig M. and Vaughn, Rayford B. “Phighting the Phisher: Using Web Bugs and
Honeytokens to Investigate the Source of Phishing Attacks”, Proceedings of the 40th Hawaii
International Conference on System Sciences, 2007.

[19] Nong Ye, “Markov Chain Model of Temporal Behavior for Anomaly Detection”, Proceedings
of the 2000 IEEE Workshop on Information Assurance and Security, United States Military
Academy, West Point, NY,6-7 June, 2000.

[20] Richardson R., “CSI/FBI Computer Crime and Security Survey”, 2007.

[21] Song Y., Locasto M. E., Stavrou A., Keromytis A. D., and Stolfo S. J.. “On the infeasibility of
modeling polymorphic shellcode”. In Proceedings of the 14th ACM conference on Computer
and communications security (CCS07), pages 541-551. ACM, 2007.

[22] Smith, R. M., “Microsoft Word Documents that Phone Home”, Privacy Foundation, August,
2000.

[23] Spitzner, L., “Honeypots: Catching the Inisder Threat” Proceedings of ACSAC. Las Vegas,
December, 2003.

[24] Spitzner, L., “Honeytokens: The Other Honeypot”, Security Focus, 2003.

[25] Stoll, C. The Cuckoo’s Egg, Doubleday, 1989.

[26] Yuill, J., Zappe M., Denning D., and Feer F.. “Honeyfiles: Deceptive Files for Intrusion
Detection”, Proceedings of the 2004 IEEE Workshop on Information Assurance, United States
Military Academy, West Point, NY, June 2004.

[27] Yuill, J., D. Denning, Feer, F., “Using Deception to Hide Things from Hackers : Processes,
Principles, and Techniques”, Journal of Information Warfare, 5(3):26-40, November, 2006.

17



A Sample D3 Documents

Figure 1: Decoy sample email message with embedded gmail account information.

18



Figure 2: Decoy tax document with bogus user information.

Figure 3: Decoy eBay receipt.

19




